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-,FOREWORD

its) This interim technical Status Report (Contraittor!s Reference No. PWA-34,t', pre-
pared by Pratt & Whitney Airtraft. Diviion of United Aircraft Corporatmon. I .ist F Im' ord.
Connecticut. as the first Semiannual Report under United States Air Iur~e Contrtict V13(015)-
6"% 1l208, Project No. .3066. Task No 306. Thi r tot was suhmitted by thlt! (oiitractor
oil ti ne t968, and covers the Report period from I January 1968 ito 8 luine I

(U): The findings and.conclusions of this report ate not deemed a-. final by the Contractor.
They are subject to, verification or revision in the Final Report to be publishtcd upon the
completion of this Contract.

(1J) The Air Force Program Moio sMr. Wayne Tall, APTC. Air Force Aero Propulsion
Laboratory, Wright-Patterson Air Force Base, Ohio, 45433.

(V)- This report, contains no classified information extracted from other classified documents.

-(U) Publication of this report does not constitute Air Force approval of the report s findings
or conclusions. It is published only for the exchange and stimulation of ideas.

Wayne Tall
Project Engineer
Air Force Aero Propulsion Laboratory
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UNCLASSIFIED ABSTRACT

(U') A three-year program was initiated to provide a directattack on the problem
of attaining high efficiency in highly loaded turbine stages. The goals of this pro-
gram are to develop turbine aerodynamic techniques and design procedures for
efficient, high work, low pressure turbines by means of analytical studies and
cascade testing, and to demonstrate the effectiveness of the techniques and pro-
cedures by designing and testing a two stage turbine that meets or exceeds the
contract stage work and efficiency goals. The first phase effort described in
this report was directed toward defining a turbine design with the highest in-
herent resistance to boundary layer separation and to select boundary layer con-

trol techniques that are best suited for extending the loading limits of the basic
turbine design.

Distribution of this abstract is unlimited.
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SECTION I

INTRIIODUC'ION

(U) The design analysis and optimization of aircraft jet engines have always
involved a trade between increasing turbine efficiency and reducing its size and
weight. The bypass turbofan engine has become Rn attractive propulsi5(M system
for future multi-mission aircraft. The specific fuel consumption of bypass
engines generally decreases with increasing bypass ratio, and it is, therefore,
essential to achieve advances in bypass flow. Increased bypass ratios, however,
require increased fan power supplied by the low pressure turbine. The objec-
tive, then, is to increase fan-drive turbine power, or loading, while maintaining
or improving the turbine aerodynamic efficiency.

(U) The turbine designer is constrained by certain unique requirements when
designing fan drive turbines. The rotational speed of the low pressure turbine
must be limited in order that the fan tip Mach number does not exceed the limit
for reasonab!e losses. This problem becomes more critical as the bypass ratio
and fan diameter increase. Applying conventional aerodynamics, when: faced
with a limiting rotational speed, the designer usually increases the diameter of
the low pressure turbine stages or increases the number of stages in order to
obtain more work and still maintain turbine efficiency. Conversely, the' reduc-
tion of turbine diameter or solidity results in a lighter turbine, but with a sacri-
fice in efficiency due to losses associated with increased loading. Considerable
gains can be realized by an engine if the size and weight reduction can be made
with no loss in efficiency. Furthermore, because of the time required between
the evolution of new concepts and engine production, turbine technology musst be
improved now, so that the desired level of turbo-fan engine performance can be
achieved for aircraft which will be operational in the 1975-1980 time period.

(U) The objective of the work done under this contract is to analyze and test
concepts which will increase the low pressure turbine loading and maintain or
increase current turbine efficiency levels. The goals of this program are to
develop turbine aerodynamic techniques and design procedures for efficient,,
high work, low pressure turbines by means of analytical studies and cascade
testing, and to demonstrate the effectiveness of the techniques, by designing and
testing a two-stage turbine that meets or exceeds the contract stage work and
efficiency goals.

(U) The program has been planned in four phrases over a period of three years.
Phase I will define the basic turbine design and analyze promising increased
loading concepts. Phases II and III consist of experimental testing to verify and
extend the turbine aerodynamic techniques and design procedures for high loading
levels. Phase IV will subject the aerodynamic techniques and design procedures
to a two-stage rotating rig test.

(U) The results of the Phase I effort are presented in this report.

(The reverse of this page is blank)
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SE( TION II

lRICIlIMIN\I{Y I)i.Si(;N ,VAI.IIJATI(IN (Task la)

1. 1 lF' t )II ECr I'iVI,

(iU) Select turbine designs that indicate in inherent high resistance to flaw sepa-
ration at high londing levels.

2. TASK OBJECTIVE

(U) The objective of the initial task of Phase I was to select a turbine design
which would satisfy the IFP design parameters as listed in Table I. Based on
these parameters, good turbine design practice and current engine cycles, and
by considering reasonable variations in work distribution, levels of reaction and
solidity, a range of turbine designs was evaluated toward the realization of a

satisfactory turbine design. From the resulting velocity triangles, preliminary
airfoil contours which provided the lowest profile loss and greatest potential for
performance improvement with boundary layer control were defined. In order
to achieve a practical and realistic design, structural problems and interface

requirements at the turbine inlet and exit were considered.

(U) The path followed in the design analysis is shown in Figure 1. The goal of
this analysis was to determine optimum flowpath, stage work split, reaction
level and solidity. The description that follows corresponds directly to the
path of Figure 1.

TABLE I

TURBINE DESIGN PARAMETERS

Number of Stages 2
Average Load Coefficient, CL* 2.2
First Blade Tip Wheel Speed 1000 fps
First Blade Inlet Hlub-Tip Diameter Ratio _< 0.8
Exit Swirl Angle - Without Exit Guide Vane 20*

- With Exit Guide Vane 00

Turbine Inlet Temperature 1450°F
Airflow 50 lb/sec
Average Stage Efficiency 91if
Life 10, 000 hr.

3
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kl() The turbine cqnfigurations are ctinstrainvd 1Pv the contract d*esig- palramete'rs

which were shown in Table I, ,,:,r''elv: l cot-ffieient, first blade tip sipeed,
maximum first blade iniht hub/tip ratio, exit swirl angle, numtrr of Mtage.;,
turbine inlet temixwraturN, stage elfic'iency, minimuim airfl',pw, and life. Ir
addition toi these paramieters, values o1 inlet total pressure and mean inlet swirl
angle representativw of typical advanced high pressure turbine exit conditioms
were chosen as 105 psia and "'0. 1 degrees. An inlet axial Mach numbt.r of 0.:3

wa. taken as representative, based on applicable current engine designs. A
rotational speed oif 14), 65,0 rpm was selected as the greatest pmssible for the
existing turbine test rig, commensurate with the required tip speed and hub/tip
ratio. The resulting airfl(PA was 67.7 ib/sec, which will maintain airfoil stress
levels within the specified life rquirernents. Trailing edge radii for all airfoils
will be 0. 020 inch and shroud clearancrq will be set at 0.020 inch. These values
are representative of advanced turlofan uncoohdt low prensure turbine designs.

(U) Mhen the above design parameters were established, work om the otimizx-
tion of the turbine flowpath and fl,,w velocity diagrams proceeded. The existing

turbine loss system was used to predict resulting aerodynamic performance.

(l') The flon paths considered in the study are shown in Figure 2. The inlet
area was held constant, since the high pressure turbine flowpath requirements
define the inlet vane length for the lw pressure turbine. The airfoil lengths
were then varied from the minimum inlet value to a maximum at the exit. The

insidle diameter was held constant in order to provide the largest possible blado
velocities.

(C) The results of the fl1'wpath parametric studly are shown in Figure 3. In
this study, the turbine efficiency was evaluated for a series of turbines, gener-

ated by the variation of exit area, reaction level and stage work split. The mean
diameter static pressure reaction was varied from 25 to 55 percent, and the
work split was varied so that 50, 55 or 60 percent of the total work wa; ex-

tracted irom the first stage. The predicted average stage efficiency was above

the required 91 percent for almost all of the turbines, with a total variation
of only 1 percent (approximate) over the enti re study. It should be noted that

this variation is of the same order of magnitude as the uncertainty contained in
anyv single prediction; therefore the apparent differences should not be tLken
too literally.

CON FIDE NTIAL- -
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(U) It can be seen that the elficiency was relativelh insensitive tL exit at (a
variation. The design area of 264 square inches was therefore chtsen on the
basis of additional considerations: namely, the turbine exit axial Mach number
and exit swirl angle. The values of exit swirl are such that an exit guidc- vatic
is required to meet the contract specifications of zero exit swirl angle. lhgf.-
work low pressure turbine optimization studies indicate that these values. of
exit swirl are required to maintain high efficiencies. Furthermore, practical
engine designs require exit guide vanes to provide rear bearing sUpport. It
,Aas decided, therefore, to include exit guide vanes to attain a realistic design,
and to suffer the associated loss penalty.

24_ _ __ _ _ Selected
OEM =, Flowpath

23

22

21

120

.3P

17

16

15
Fors Frst Second Second

Van@e lode Vane Bnlae

Figure 2 Flowpaths for Turbine Study
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(t ) Variatiton ol' the exit Mach number an1(1 exit swi rl angle with exit area are
showwi in Hgiii-es 4 wid 5, respectively. The reason for Choosing a slightly
largerI exit a rea thain the apparent optimum value was to achieve a much lower
exit %lach number. A lowv Nach numiber is ruqui red for stable comIbustion in an
afterburning engine. A lowe.r turbine exit Mach number allows the use (if a
shorter and lighter diffuser between the turbine and afterburner. Furthermore,
the maximum work ptotential of the turbine is limiited by' the choking of the exit
guide vanes. Lower turbine exit Mach numbers, therefore, have the additional
benefit of increased work pote-ntial. A large range of work potential is required
for an engine with a variable area jet nozzle. T'he greater work potential is
also beneficial for growth capability and development margin. An exit axial
Mach number of 0. 43 resulted from the selected exit annulu&. area. This compares
favorably with values of currently applicable P1ratt & Whitney Aircraft engines,
which range, in exit axial Mach number, from 0.36 to 0.46.

1.0 - - -- - -

0.9 - -

Mean Static
Pressure Reaction

E 0.8 /-55%- -

z 40%

UA

S0.5

0.34

Figure 4 Variation of Turbine Exit Axial Mach Number With Exit Area at
Various Reaction Levels
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Equal SlaqW Work Split oi, 5
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U,

00cto Levelsw Racio
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guide vane lossn idct S thatgte Exitimnuus Areaewr spifi 2ecett

eaFisgue at Vanriaeration ofevebin Exit extSwirl Angle With ExtAecon baterou

exit relative Mach number increase rapidly with second-stage work (see

Figure 6), which indicates large exit guide vane turning requirements and there-

fore high exit guide vane losses. Therefore, an equal stage-work split was

chosen for the design, and is used throughout the- remainder of this stud~y.
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Figure 6 Effect of Second-Stage Work Distribution on Turbine Exit

Conditions

5. IEACTION

(L;) A total of three nominal reaction levels were chosen for the parametric
study. A mean second-stage reaction of 55, 40 and 25 percent was used. An
additional study indicated that the first-stage reactions should be lower than the
corresponding second-stage reactions for optimum turbine efficiency and these
were chosen as 45, :30 and 25 percent, respectively. A detailed streamline
analysis employing controlled-vortex technique was carried out and a summary
is shown in Figure 7, (a) through (c). The solid line indicates the streamline

controlled-vortex results while the dashed line indicates the comparable free-
vortex distribution. In every case the controlled-vortex designs indicate a much
greater root reaction than their free-vortex counterparts, which should reduce
corner boundary layer losses.
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Figure 7 Variation of Stage Reaction With Span for Various Reaction Levels
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(U) Analysis oil the exit guide vane iK rfxlrowmance indicated that an acce,-t:,hh'
design could nwt be achieved for th, excessive swirl and Mach numturs which
r4'silte~d liiiiii tOw (.! iiiiitinii 11 high stage lIo1(ding and high Iccti(on. riht exit
guide vant' inlet Miah )inumlshr amid sikirl distrihutimn is shiown in Figure 4 aid

9, resliectivelv. The swi rI angle level was about :18 degrees throughout the
Spani with the ,M'ach nunmber as high as 0.7 even after the blading angles and
work distributioln hadl been ri)ldiflied to improve the exit guide vane designi. The
lri'bleili is that a high soliflitv vane ca~scadle is required to remove the large
swirl. Tl'hus the highi bltckage, resulting from the high solidity and the high
inlet Mach number results in a choking condition at the root. Figure 10 shows
the exit guide vane choking margin for the high reaction turbine, and indicates
that the van'n, will not pass the required flow at the root. Therefore, the high
reactiton turbine design was not ptursued further in this program.

(Ui Airfoils having three soliditv levels for the medium reaction and four
soliditv levels for the low reaction were analyzed. For the preliminary ev-alua-
tioin, the follhwinig it,,ws were considered to be of signi'flcance in making a

soliditY selection:

1 Z\\ iefel Load ('oefficient
• Airfoil P'ressurv Distribution

P Pressure lRise Co.efficient (AP/Q)
• Maximum Local Surface Maich Number

High Reaction
0.8
0.7 --

0.6

0.5 -
-0a,
LU,- 0.4 -

0.3
0 20 40 60 80 100

Span. Percent

Figure 8 Variation of Exit Guide Vane Inlet Mach Number With Span
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High Reaction
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Figure 9 Variation of Exit Guide vane Turning Angle With Spin

High Reaction
1.8- - - -

1.6 --

* 1.4 - - _ _ _ __ _

.~1.2 - -

1.0- - -

0--
0 0 40 60 so 100

Span, Percent

Figure 10 Variation of Choking Margin With Span
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(i *rhe airfoils designed in this Task required approximatelY six contv,.r re-
finements ea ch before adequate pressure (list ril)ut ions resulted, and tInt % 1, V
referred to as prtllimin rv ,ir aiiils in % hat follows. The solt(itv levels N'iere
taken in 15", increments about the advanced level referred to as normal in thi.,,
studY. The resuulting priessure (list ri but ions, convergence ratios, radii itof ' rvaa-
ture' and airfoil secttions for all solidities and reactions are found in Appendix I.

(U) Due to the high-stage loading, the turbine blading has higher than normal
Mach numbers, and lower than normal airfoil convergence. This is particu-
larly true at the root, since the available wheel speed is lowest at this loint.
Consequently, the blade root region is potentiallY a high loss region, espceially
for a low reaction design. The difficulty is apparent in the low reaction airfoil

pressure distribution shown for the preliminary airfoils in Appendix I. The
pressure distributions for the low reaction blade roots of the first and second
stages indicate that for both blades the lack of convergence has resulted in
very low suctiun surface pressures near the leading edge. Consequently, the

gas must decelerate over nearly the entire length of the surface, resulting in
an unstable flow condition. The high Mach numbers also introduced the danger
of large shock losses. A comparison of the significant design parameters for
the low andl medium reaction designs of normal solidity is tabulated in Table II.
Normal soliditv is defined by what are considered advinced state-of-the art
Zwiefel load coefficients shown in the table.

TABLE II

PRELIMINARY AIRFOILS
LOW REAC TION

NORM•,AL SOLIDITY

Pitch Load Uncovered Maximum
Section Chord Coefficient Turning AL/4 Mach Number

First Stage Vane Root 0.942 0.910 14.68 0.363 1.2:30:
First Stage Vane Tip 0.952 0. 6 94 13.18 0.109 0.840

First Stage Blade Root 0.6:35 0.S 10 16.00 0.368 1.108
First Stage Blade Tip 0.925 1. 095 14.38 0.200 0.1401

Second Stage Vane Root 0. 760 0.955 13.43 0.378 1.265
Second Stage Vane Tip 0.945 0.769 12.16 0.084 0.918

Second Stage Blade Root 0.555 0.878 17.60 0.598 1.410
Second Stage Blade Tip 0.920 1.106 16.00 0. 293 0.931
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'fAIBLE It ((ontd)

MEDIUM REAC(I1IN

NORMAL. 8U)1,11)T'Y

Pitch Load U'ncovered ,Maximum
Section Chord Coefficient Turning API/Q Mach Number

First Stage Vane Root 1.003 0. 950 13.8 0.259 1.112
First Stage Vane Tip 1.147 0.799 1:1.0 0. 126 0-. s20

First Stage Blade Root 0.683 0.840 17.4 0.337 1. 108
First Stage Blade Tip 1.088 1.100 13.8 0.210 0. i30

Second Stage Vane Root 0.708 0.958 13.3 0.308 1.200
Second Stage Vane Tip 0.967 0.810 12.9 0.179 0.853

Second Stage Blade Root 0.566 0.900 14.8 0.488 1.305
Second Stage Blade Tip 1.193 0.941 12.8 0.250 1. 013

The surface Mach numbers and pressure rise coefficients tend to be highest for
both the vanes and blades at the low reaction levels. It was, therefore, con-

eluded that the medium reaction turbine design has the greatest potential to
attain high turbine efficiencies. The remainder of the study, then, is concerned
only with 50/50 work-split medium-reaction turbine designs.

(U) The medium reaction turbine design was selected hnqed on the airfoil
surface pressure distribution analysis. The selection of medium reaction was
further substantiated by the existing turbine rig test data. Test results from
various single stage rotating rigs indicate that the optimum turbine efliciency

is achieved at blade root reaction levels of 40 to 60 percent.

(U) It should be noted that the predicted turbine efficiency for the turbines at
various reaction levels indicates (refer to Figure 3) that a higher efficiency can
be attained at the lowest mean reaction, for all stage-work splits. This is
basically due to the fact that the current loss system does not include the effects
of corner boundary layer separation and Mach number. A fall-off in efficiency
should occur at low reaction because the airfoil pressure distributions indicate
that separation would take place in the root region. On the other hand, the
efficiency would fall off for very high reaction turbines because of the associated
high exit Mach numbers from the blades and additional camber in the second-
stage vane and exit guide vane. A comparison of some of the significant vector
diagram parameters is presented in Figures 11 and 12 for turbines having the
three reactions mentioned above.
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(U') In suummarv, based on the fact that the high reaction configuration had :ant
I no pract'ic:l ex it gouide vatie -dcSIgn, and that the mi rea , ,ti. in cit,, iw giur:i t ho. i Id
potvi-ntia;ll high Ios,' bladet root airfoil set'tins. the tinal •(' ligmr-atimor v4'.rf ltirlu
Iro"m this initial task were for the medium r,,acti irn lvvcl. The mni'ritim r'actii
veloeitv diagr:un da~t is presented for the lim-st sUtge in Table)h Ill and fir the
seco(nd stage ill Table [V.

"T'ABLE.E Ill

FIILS'T S TAGEI: TmimiuNE !) )TA - Mcrlt' RI-A(' lI n.

Inlet Total Pressure (PtO psia - 14,. II

Inlet I'otal Temperature ('I1to) ('t) - 191 oi. it

Gas Flow (Wg) (lbs/sec) - 67.7
Total./tottal Efliciencv (Ntt) - 90.,
Turbine -Work (All) (Btu lb.) - 67.3

Root Mean .. _

Stagt. Totai I ressure lRatio (pt(/Pt,) 1. 4 1. •5 1. 4o
\anc L*tatic Pressure Rati, (! so/P. ) 1.6; 1..5 1. 4,-
Blade Static Pressure Ratio (Ps/ I Ps2) 1.32 1.3o 1.311
Vane Inlet (-ais Angle a(,) f; ;. I 59.6 61 .
\:uie EKxit Gas Angle ( a 1 ) 26.5 22.7 i.:1
Vacne Camber ( 0 V) 09. 4 97. 7 1 141. 1
Mlade Inlet (Gas Angle d 1) :17. 17.; 31 9.5.4
8 lade Exit Gas Angle i ,) 2..7 21.7 2..7

Wlade 1'Cuuber b 8 b) 117.7 lM.", I11.9
Stage Exit Swirl Angle 4I11."_ .-12. 1 66.
Mlade Inlet Absolute (Gas Velocit" ,( ') I,4211 it I f.-1. 1 1II ! 1.

Mlade Exit Absolute Cas Velocitv (C ) 1 .t:-2. I) '2"2. 1 W;9.-,. I
Blade Inlet RIelative Gas Velocitv WI1 1211.. 0 92k..
Blade Exit Relative (Gas Velocity (W0 ,) 11;!o. 0 1-199. 11 1.14!.. 1.
Blade In let Tangential \elocitv (I"1 ) 741. !1 *I5 . ' .4 1. to
Blade Exit Tangentia:l Velocity (U'.,) 7111. It -%62. I I u3. 41

Blade Reaction ( 1) I-- S2 r/ '1)-P 5 2)2 - )_1121-.! 9 3f. l :37-.3

\'ane Inlet Absolute Mach Number (.'MI,) a II.3 , ,1 (1_. -29 0. 279

Vane Exit Absolite Mach Number (M lh) i. !1-1! It. •..4 1). 77it

Blade Inlet Relative Mach Number (MMirelD o. 6;22 0. 1•69 .:, 17
Blade Exit Relative Mach Number (.M2rel) . S!I9 to. 7*n (1 .. ,:1
Interstage A!:ial Mach Number 0.371 11. 32o _ ). 29%,
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"TABLE IV

SECO)Ni ) I'A;E IrlIIINE DATA - MEDIUM IREAC'TI(IN

Inlet Total Pressure (Pto) (psia) - 56.,I
Inlht Total lenmperature (Tto) (' i) - 16;3. !

GasF lmlv (Wg) (lbs/sec) - 67.7
Total ATotal LElicienev (Ntt) - 91.5

Turbine W\'ork (All) (Btu/lb) - 67.2

Root Mean iii

Stage T,,Wt•I Pres.sure Ratio (Pto/Pt2) 1.88 2.05 2. 09
\anie Static Pressure Ratio (P,;o/Psl ) 1.57 1.. 5 1.4

Blade Static Pressure Ratio (Psl/Ps2) 1.32 1.51 1.61

Vane Tiflet Gas Angle ( o ) 37.3 50.0 61.9
Vane Exit Gas Angle ( 1) 30.6 24.5 22.6
Vani., Caitnber ( 0 v) 112.1 105.5 95.5

Blade inlet Gas Anhgle ( 1 1) 45.4 47.1 67.0

Blade Exit Gas Angle ( ! .0) :7.0 28.9 22.3

Blade Camber ( 0 b) 97.6 104.0 90.7

Stage Exit Swirl Angle ( a 2) 37.7 57.9 59.8

Blade Inlet Absolute G."s Velocity (C 1 ) 1798.0 1570.0 1355.0
Blade txit Absolute Gas Velocity (c-,) 1178.0 917.0 711.0

Blade Inlet Relative Gas Velocity (W 1 ) 1242.0 824.0 506.0

Blade Exit Relative Gas Velocity (W2) 1655.0 1591.0 1586.0

Blade Inlet Tangrential VelocitY (U1 ) 693.0 891.0 1090.0
Blad, Exit Tangential Velocity (U2) 693.0 906.0 1112.0

Blade Reaction (Is l-Ps2/lpsoP-Is2) 30.3 40.8 48.5
Va're Inlet Absolute Mach Number (MOab) 0.534 0.385 0.292

Vane Exit Absolute Mach Number (Mlab) 1.003 0.869 0.765

Blade Inlet Relative Mach Number (.\I rel) 0.698 0.446 0.269

Blade Exit Relative Mach Number (M2re0) 0. 944 0.904 0.892

Interstage Axial Mach Number 0.568 0.435 0.337

6. SOLIDITY

W)" Once the reaction level was chosen for the design, the solidity had to he
determined. The important preliminary airfoil parameters were tabulated for

normal sciditv levels in Table II and are show,. or the medium and low solidity
in Table V.
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TAll Eil V

,MEIVUM REACTION - MEDRINM SO l.lf)'Y (415' [7Al) C "OEFFICIIENT)

Pitch Load Uncovered Maximum
Section Chord Coefficient Turning Il( Mach No.

First Stage Vane Root 1. 152 1.0!10 14.7 0.337 1.170
First Stage Vane Tip 1.317 0.920 15.4 0.236
First Stage Blade Root 0. 792 0. 966 17. 7 0. 4 13 1. If;o
First Stage Blade Tip 1.262 1.275 14.8 0.309
Second Stage Vane Root 0.809 1.100 14.4 0.391 1.2s0
Second Stage Vane Tip 1. 105 0. 930 14.2 0.2,t8 0. S92
Second Stage Blade Root 0.648 1.035 16.4 0.548 1.361
Second Stage Blade Tip 1. 366 1.078 13.4 0.317 1.0092

MEDIUM REACTION - LOW SOLIDITY (+30',, LOAD COEFFICIENT)

First Stage Vane Root 1.296 1.235 16.0 0.444 1.270
First Stage Vane Tip 1.482 1.038 18.5 0.369 0.970
First Stage Blade Root 0.880 1.092 18.5 0.495 1.230
First Stage Blade Tip 1.403 1.419 16.8 0.421 0.955
Second Stage Vane Root 0.913 1.245 16.0 0.511 1.390
Second Stage Vane Tip 1.247 1.052 15.2 0.282 0.907
Second Stage Blade Root 0.743 1.170 18.4 0.656 1.4641
Second Stage Blade Tip 1.565 1.236 14.7 0.387 1.148

The lowest solidity possible for which a separation free flow can be predicted
was to be selected in order to ensure the required turbine performance. As
part of Task la, two preliminary turbine designs (ref. Figure 1) had to be
chosen, after which a boundary layer analysis was to be applied to determine
each design's inherent resistance to flow separation.

(U) Since all of the three loading parameters increase toward flow separation
with reduced solidity, one turbine configuration was selected which met all of
the present turbine design criteria, that is, the medium reaction normal solidity
configuration which was shown in Table H. This configuration would ensure
no separation, and minimize the risk of falling below the target efficiency. The
second configuration chosen would have solidity levels below present experience.

Depending on the results of the airfoil refinement study, the solidity would be
selected as low as possible in accordance with our ability to design separation

free airfoil sections.

(The reverse of this page is blank)
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SEC I'( iN III

A.Ill ItlV( 1. ('()\' 1'(1'1{ ANAI. L NS I I'ask lI i

I. I 1 i ) {! .( I I F

(1) l)D sign a irl-oil colnlours h;1\ing the high,(-t I.I sistait.ce. ttl,, I% m.p:ir.t ItIn.

2. I'ASK iI 1 .•I 1.:(CIV E

(t'i The tut Iilne flowpath anti vector diagr: II study vdescribed in S',ctiii II r,.sulted
in an o)ptimnum turl)ine with medium reaction h,\,I, ci,,'ual staige-%,irk ,-plit and with
an elevation such that the exit anntilus ai'"1 is 264l square inches. Thre, levels of
solidity for each airfoil were considered and as part of the Task la effort, prelim-
in I' v airfoil sections were designed but were foiund to I)be to'• crude to make a logi-
cal choice of those airfoils which needed furthtr refinement. Therefore, thc necs-
sary detailed airfoil contour analysis was cofnduc•ed' diring this Task.

:1. i1HEIIMINAIY AIRF)Il. ANAI,xSIS

(U) The preliminary airfoils for the medium reaction at three solidities and at
three spanwise sections are shown in Appendix I. For convenience the pertinent
acrodynamic parameters are tabulated in Table VI. An average of six calcula-
tions had to be made to arrive at the airfoils shown in these figures. These root,
mean and tip airfoil sections for both vanes and blade-- - .cording
to the following considerations:

"* Suction and P ressure Surfa ce lPressure D)isttributions

"* Suction Surface Radius of Curvature

"* Passage Convergence

" Airfoil Cross Section.

(U) The pressure distribution is the most important preliminar" indicator used in
the evaluation. Values of suction surface pressure coefficient (AP'Q) and diffusion
parameter (E), based on the minimum andi exit pressures, are the determining
factors in the preliminary evaluation. Values of (AP/Q) above 0.5 arc taken to in-

dicate separating airfoils. At the same time, convergence is examinted to insure
a uniformlv converging channel. The suction surface r-adius of curvature is also
impo)rtant since the airfoil surface pressure distribution is highly" sensitive to this
parameter, and therefore it is the most basic design parameter to hle va Ned when
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r.,,!4!ving thf, pir,•Lr. (list 1 ribut ion. This is pa rticularly true %hen soimc ;uljvr-
sonic ilo" I'rc'itill t'xi st V%.hich is triet for mo.st of the resulting airfoil,. ine design
of the amitril crrss suection must bie examinled from a structural %tatidpoint. A
radial a rca (I .1ribution or taper must be seleucted sutch that the stir.ss h.c e. : rev
act' fta hi . from the stilndpl•int of eidu riance.

"TA BIE VI

MEI)IUM RIEACTI()N PREIAMINAHlY AIIF0lI, SUMMAI{Y

No. of Foils, Exit Mach Max. Surface

Z Number, M9, AP/Q E Mach Number

First Stage Vane Root
Normal Solidity (v2 0.949 0.259 0.235 1. 112
Medium Solidity 54 0.949 0.337 0.296 1.170
Low Solidity 48 0.942 0.443 0.384 1.270

First Stage Vane Mean
Normal Solidity 62 0.852 0.213 0.208 0.966;
Medium Solidity 54 0.852 0.348 0.311 1.058
Low Solidity 48 0.852 0.456 0.396 1.144

First Stage Vane Tip
Normal Sol idity 62 0.770 0.126 0.034 0.-20
Medium Solidity 54 0.770 0.235 0.225 0.8s.4
Low Solidity 484 0.770 0.369 0.331 0.970

First Stage Blade Root
Normal Solidity 116 0.890 0.337 0.169 1.108
Medium Solidity 100 0.890 0.413 0.365 1. 160
Low Sol idity 90 0.890 0.495 0.423 1.230

First Stage Blade Mean

Normal Solidity 116 0.788 0.331 0.305 0.968
Medium Solidity 100 0.788 0.418 0.376 1.031
Low Solidity 90 0.788 0.527 0.456 1.119

First Stage Blade Tip
Normal Solidity 116 0.730 0.210 0.243 0.830
Medium Solidity 100 0.730 0.303 0.289 0.884
Low Solidity 90 0.730 0.416 0.382 0.955
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TABItE VI (tont'd)

,M EI RM IEAC'TION PRE1I1MINARY AIIIFOI. SUMMAVY

No. of Foils, Exit Mach Max Surfac•'
z Nu r. t' M 11)/Q F Ma10 Number

Second Stage Vane Hoot
Normal Solidity 10 0. 990 0.30$ 0. 275 1. 200
Medium Soliditv 70 0. 990 0. 391 0. 3; 1.250
Low Solidity 62 1.000 0.511 0.415 1.390

Second Stage Vane Mean
Normal Solidity 80 0.S70 0.227 0.214 0. t!)9
Medium Solidity 70 0.S70 0.314 0.289 1.060
Low SoliditY 62 0.870 0.362 0.321 , 1.097

Second Stage Vane Tip
Normal Solidity s0 0.7765 0.179 0.M15 0.853
Medium Solidity 70 0.765 0.248 0.252 0.892
Low Solidit'v 62 0.705 0.282 0.271 0.907

Second Stage Mlade Root
Normal Solidity 126 0.944 0.488 0.412 1.305
Medium Solidity 110 0.944 0.548 0.449 1.361
Low Solidity 96 0.944 0.656 0.503 1.464

SeconH Stage Blade Mean
Normal Solidity 126 0.90,1 0.263 0.244 1. 067
Medium Solidity 110 0.904 0.378 0.304 I. 156
Low Solidity 96 0.904 0.495 0.423 1. 256

Second Stage Blade Tip
Normal Solidity 126 0.492 0.260 0.236 1. 051
Medium Solidity 110 0.992 0.321 0.290 1.092
Low Solidity 96 0.892 0.387 0.346 1.148

(U) Having established satisfactory preliminary turbine airfoils, the next step in
the airfoil contour design was a preliminary two-dimensional boundary layer cal-
culation intended to evaluate the boundary layer characteristics of each airfoil
root section at the three solidities. The root sections tend to be most prone to
separation anti should receive the most attention. The results of these analyses
and available correlations of cascade diffusion parameter data determined the
selection of airfoils for refinement and final boundary layer calculations.
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• 1. IPIU.FIMINAIHY IOWINI)AIY l.AY'lEl ANAILYSIS

(JI 'il %o dinltnsli4)nal ltoundlallrv laver calciulations %%ere gene ra ted fi r th li '1rI imin-

intiay Iu.'tuctiol surfah, i'rot sections at niolnal, meIdium and flol soliditv. 'hi putl-
post. of thtes'e calculations %%as to assist in the selection of practical lo"',1r sol ,ldity
limits pirior to iirfoil contour refinement.

(U) lwo b)0(tlndlairv la v•t• c'alculations %tere mad(e for" each root sect ion and lhese are
shown in rawles VuI and VIII. The first assumed no transition and continued either
until laminair sepat ration was indicated, or the end of the airfoil was reached. TaI)IC
VII gives the loundary layer parameters at the last calculation point prior to separa-
tion. The t\\o-dimensional criteria used to determine if an airfoil section is at
the verge of separation was a drag coefficient of 0,001 or less. Values of Reynold's
Number lbased on momentum thickness at the point of transition are also shown.
This value was not used as an indicator of transition but is presented for reference
only. W•en compared to the Tetervin's incompressible flat plate, zero turbulence,
zero pressure gradient value oif approximately 187, it is noted that the airfoil values
\\ere always above this number.

TABLE VII

LAMINAR SEPARAY;ION AT ROOT

Distance on Separation
Surface to Reynolds Shape Drag
Separation, Number, Factor Coefficut.

Solidity Inches Re 6 Ps/PTr If Cy

First Vane

Meditun 0.768 406 0.442 3.523 0.00083
Low 0.675 391 0.400 3.851 0.00062

First Blade

Medium 0.427 292 0.458 3.840 0.00064
Low 0.544 335 0.423 3. 836 0.00070

Second Vane

Medium 0.440 228 0.390 3.572 0.00172
Low 0.737 311 0.330 3.779 0.00126

Second Blade

Medium 0.601 272 0.368 3.713 0.00138
Low 0.535 260 0.318 4.198 0.00092
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TAIIILE VIII

T1 "I1 iBUIENT BOU'NI)ARfY IAY[II -It lo SICT'IO}N

D)istance on Tr Insition
Surface to Reynolds Data Shape Dr'ag
Transition, Numbers I(l'int, t. attr (It i*f. :.nt

S elidity Inches Ile a Stnax p'. " VI'r If CI.

First Vane

Medium 0. 650 350 87.6 0..115 2.05 0. 0'!6 1
Low 0.550 320 88.51 . 560 2.03 0.0023:1

First Blade

Normal 0.225 185 87.0 0.547 2.02 0.00:108
Medium 0.252 197 86.9 0.3569 2.07 0. 00239

Low O.3-1 239 87.0 0.581 2.1.1 0. 00193

Second Vane

Meditum 0.440 228 88.5 0.465 2.23 0.00260
lowV 0.487 251 88. 0.488 2.27 0.00228

Second Blade

Normal* 0.170 125 89.0 0.46:3 2.30 0.00282
Medium* 0.200 139 89.0 0.466 2.38 0.00212
Low* 0.228 147 89.0 0.478 2.56 0. 00105

*Separation Apparently at About 9-1 percent of Smax.

(11) The second lboundary layer calculation assumed transition to turbulent flow at
the first minimum on the suctio, Si(de pressure profile. No turbulent boundary layer
separation was indicated except near the trailing edge of the second blade root.
Table VIII presents a summary of these turbulent boundary layer calculations at
approximately 90 percent of the total suction surface length, prior to the predicted
sharp recompression near the trailing edge. Cascade test data indicates, however,
that the actual measured recompression is much softer than that indicated by the
calculation. The validity of the pressure distribution calculation used is questionable
for the last 8 percent of the airfoil surface. Therefore, within the limitations of
the analysis, none of the airfoil root sections indicate turbulent separation.
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0 t I'he uth-ct fit t1i:iii it ili '0 Pii? it location %kas uvll~.tiat for the first va.ns tnf tahii.
]:it(.(i] o lut \1vI. Nluving the( Iriai.sitioii poinit fbuy or aflt of the first minitrumi

ilcý-lc p lillt dtid wint hav :1 i signifiui cnt effect (Onl the turbulent Ilsiimdaiv ta.~vr be-

TABILE IX

:F*Fi.:cT oF MOVING TRANSITIiON POINT
FIRST VANE ROOT SEICTION

Low Solidity

Distance to) Drag
TUransition, Sinax C oeffici ent
Inches CF0 If

o. .17 5 H88.5 0. 00225 0.0(0602 0. 00294 2. 044 0.02P95
0l.550 s 8. 5 0. 00233 0. 00567 0.010278 2.039 0. 0283
0i. 67 5) 88.5 0. (10246 0. 0105 11 0. 00253 2.03W 0.0258

Xdcdiurn Solidity

0. 5 75 87. 5 0.00249 0.004191 0.00241) 2.047 0.0250
0.650 87.5 0.00261 0.00447 0.00218 2. 051 0.0228
o).768 87.5 0.00271 0.00404 0.00196 2. 059 0.0210

(W) ýýelcctC( ploits of static-to-total pressulre ratio arid dIrag coefficient as functions
of airfoil suction surface distance are shown in Figures 15 through 22. The medium
and( low solidlity root sections of the preliminary turbine airfoils are shown, since
thcste 501 iflitiyS are more critical than the normal solidity. Furthermore, a corn-
pa rison of the pressure ratio and drag coefficients of all three solidities for the
second-stage Wlade root, the most critical airfoil section in the turbine, are shown
in Vigilire 2:? and 24. ",-. early laminar separation indicated for normal solidity is
probably caused by lack of contour refinement relative to the more highly loaded
airfoils.

(U) TFhe drag coefficient is a significant parameter which indicates turbulent bound-
ar .v la - er behavior. Some trendls on the variation of the drag coefficient (at the 90
perceint point with sol idity is shown for vane roots in Figure 25, and for blade roots
in Figure 26. For two-dimensional turbulent boundary lay' ers, it is doubtful that
separation can be avoidled with drag coefficients 0.001 or less. Therefore, on a two-
dimensional basis, the low solidity second blade root appears to be on the verge of
sep~aration, whereas the root section boundary layers of the other foils exhibit some
residlual strength at low solidity.
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5. SELECTION OF AIRFOILS FOIR c()NTI'( 0Ii :EFINEMI-NT

(U') Since the two-dimensional hx)unda rY layer ca:lculations prcviousl, discussed (do0
not account for three-dimensional flow i)henomuna which cause separation in the
suction surface corners prior to two dimensional separation on the airfoil surface,
the two-dimensional practical drag coefficient of 0.001 is insufficient to account
for the three-dimensional characteristics. Trhere are insufficient data and inade-
quate analytical tools available at this time to quantitatively define the three-dimen-
sional boundary layer. Local shock losses due to local transonic flow for the foils
under consideration may trigger even an earlier separation. Referring to Figures
25 and 26, a drag coefficient of 0.002 corresponds closely to the medium solidity
for the second blade and the low solidity for the first three airfoils. Therefore,
these solidities are considered to be the reasonable lower limits for the low solidity
turbine designs. Based on this boundary layer analysis, then, and in order to pro-
vide the necessary range of selection to be considered for the Phase If design, the
following preliminary airfoils were selected for contour refinement: first vane,
first blade and second vane - normal, medium and low solidity; second blade -
normal and medium solidity.

6. FINAL AIRFOIL CONTOUR REFINEMENT

(U) The selected preliminary airfoil contours were refined to further improve
pressure distribution and increase resistance to flow separation. Modifications
of the contours required several iterations on each section to arrive at the desired
pressure distribution. For each solidity, the airfoil radius of curvature, cross
section and passage convergence were varied to minimize suction surface pressure
coefficient (AP/Q) and the rate of recompression in the trailing edge region. The
contour which was considered best suited to attain the goal, results in a suction
surface pressure distribution that drops rapidly from the leading edge to a rela-
tively flat minimum static pressure, and gradually slopes up to the exit pressure
at the trailing edge.

(U) To show the steps taken for each airfoil would result in a voluminous collection
of airfoils and their related parameters. As an illustration, however, the refine-
ment of the first blade root section at low solidity is presented in Figure 2.7. The
initial airfoil was the one which was referred to as preliminary, but, as previously
noted, it has already undergone several calculations. The refinement steps were
as follows:

Step 1. Lowered airfoil leading edge to shift loading from front portion back
toward the minimum radius of curvature region.

Step 2. Increased trailing edge wedge angle to decrease radius of curvature
and reduce pressure gradient at trailing edge.
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Step :1. Lo%%vied pe~ak ()f the stictiofl sitifii ce (minimnum ra'l tos (of (Irahr

point) to ireihce IoaIdiflg in thm it : re

Step 4. liepeaIted Step :3 until suiction sitifitce Ipr(-;u re profile %%,s flat as
possible.

MEDIUM REACTION
FIRST SLADE -PI~I4R

ROOT SECTION .- SPI

LOWSDLIOITY STEP

09

06 ---

10

04

AX0 l DITAC FRO LEAIN EDG uIIE Y XAHOD I
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The change in the airfoil shape from preliminary to final configuration Is shown
in Figure 2S.

MEDIUM REACTION
FIRST BLADE

ROOT SECTION

LOW SOLIDITY
-.. 10

C- FINALa
-- •. PRELIMINARY

C)
-a

X( 0.8- -_ __

m

'U 0a

C2

dc

I-- 0.4 __

a

0.

2 ,

z

I- 0

0 02 0.4 0.6 0.8 1.0

AXIAL DISTANCE FROM LEADING EDGE DIVIDED BY AXIAL CHORD, XIB

Figure 28

(U) The final airfoil contours for the root, mean and tip sections for the selected
airfoils are shown in Appendix II. In addition, for each airfoil the surface pressure
distributions and suction surface radius of curvature distributions are shown. When
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the preliminary and final values of the airfoil pressure rise coefficients are com-
pared, the values for the final contours are not in all cases lower than the prelim-
inary values. The discrepancy is due to the fact that the computational procedure
was changed between the time that the preliminary calculations and final calculations
were made. The change was in the method by which the effect of streamline diver-
genc9 was evaluated in the airfoil pressure distribution deck. The final method
of calculation is felt to be more reliable than the original.

(U) Some general observations concerning these airfoils are that: pressure dis-
tributions of the second stage airfoils were more difficult to refine than the first
stage; it was more difficult to attain flat suction surface pressure distributions
for low solidity airfoils, especially at the root sections; the contour refinement
problems become more difficult as the surface maximum Mach number increases,
%%ith the result that the hump in the suction surface pressure distribution becomes
difficult to eliminate.

7. FINAL AIF()lIL ('W'NTOulI BOUNDARY LAYER CALCULATIONS

(U) Two-dimensional boundary layer calculations were made for the fin.-l refined
contours of the lowest solidity designs. These included the airfoils of the first
three rows with load coefficients 30 percent above normal (low solidity) and the
second blade with a load coefficient of 15 percent above normal (medium solidity).
It was possible to effect some additional improvement by the refinement procedure
over the preliminary airfoils as noted in the results tabulated in Table X. In this
table the drag coefficients are compared for the preliminary and final airfoils. In
addition, the drag coefficients for the root sections of these airfoils are shown in
Figures 29 through :12.

TABLE X

EFFECT OF ROOT CONTOUR REFINEMENT ON DRAG COEFFICIENT

Preliminary Final
Airfoil Solidity % Smax Drag Coefficient, C•.

First Stage Vane Low 88.5 0. 0023 0.0030
First Stage Blade Low 87.0 0. 0019 0. 0029
Second Stage Vane Low 88.4 0. 0023 0. 0018
Second Stage Blade Medium 89.0 0. 0021 0. 0023
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SECTION IV

BOUNDARY LAYER CONTR(, i, SURVEY (Task Ic)

1. RFP OBJECTIVE

(U) Make a preliminary selection of boundary layer control techniques suitable

for reducing corner separation.

2. TASK OBJECTIVE

(U) A comprehensive review of the literature on losses in turbomachinery was

conducted to provide the background for a preliminary selection of boundary

layer control methods applicable to this program. Particular emphasis was
directed toward three-dimensional boundary layer characteristics and control

methods related to turbine cascades. The literature was reviewed for in-

formation on control methods conforming to the following design criteria:

"* applicability to high aspect ratio, uncoaled turbines with no external
fluid source or sink available, i. e., no blowing or sucking;

"* effectiveness ir. reducing secondary flow or corner boundary layer
separation;

"* manufacturing feasibility;

"* acceptable structural integrity of turbine.

3. LITERATURE SOURCES

(U) The literature sources listed below were searched, including bibliographies
in the three listed books. Literature received was reviewed and classified into
three categories: (1) relevant and significant information about boundary layers
and their control in uncooled turbines (Ref. 1 through 23); (2) background and

supporting information pertaining to secondary losses in turbomachinery
(Bibliography, 1. Secondary Flow in Turbomachinery); and (3) relevant but

inconsequential information related to losses in turbomachinery (Bibliography,

2. L[sses in Turbomachinery-General). References in the first category are

included in the List of References and reviewed in the following paragraphs.

Reports and articlis in the second and third categories are listed in the Bibli-
ography.
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Aertromnut cal I'Engiinoo'ring Index 1917-1 t5
A(;A Itl D 944;t
App.\fl ol Mechan ics Rev •ews I1o!i- 1 9t;7
App ld 'd itlonc o K. Technol og I !9 •- i !O;

ASTiL - Ill)(' 196l3-!•97
11M.' Search (Jan. 17, 19.1,) I 957-1!#67
Engineering Index 191.5-1 9"
Indl. Aeorospace Abstracts I-ti¶,;
NACA-NASA-Star l!i-[-1_;7

MUc lear Sc ionce Ahst ravts 19119-1 9';7
I'hvsics Ahistracts I1 lii-1 9it;!

Zitschrifi Fur Fluirwissenschaften 196ie.l-1967

IAC Card Catalog
FRI)C Cant ('atalog

Schlichting, iDr. Hiernmann, Boundary layer Theorv. McGraw-Hill,

New York. 196;0

lIachmann. G. V. , Boundarv lav,,r & Flow ('ontrol: Its PrinciPles
Applicatio-, \'t;. I 1, Pcrga mon Press, New York, 196n;1

Ilorlock. J. II. . Axial Flow Turbines; Fluid Mechanics and Ther-
niodynamniics, lhitutrworths, London, 1961;

4. SECONDARY ILOSSE'S

(U) Secondary losses in cascade flow are Wefined as all losses not accounted
for by the skin-friction losses on the airfoils and annulus walls. These losses

can be either direct or indirect. The direct losses include losses from trail-
ing edge wakes and blockage, tip clearance, increased skin-friction in corners

and soparation of corners. annulus walls and airfoils. The main forms of

indirect he:s.os are passage blockage, and deviations from design flow angles.

(U) The recent literature indicates that the lpredominate' secondary loss occur-
ring in cascade flow i.,; due to the separatod houndary layers in the suction sur-
face corners (8, 15, 1!)*. The corner boundary layers separato mainly due to

the presence of the annulus wvail, and the accumulation of low energy fluid in
the corners. The low energy fluid which accumulatts in the suction surface

corners from elsewhere in the cascade. Figurt. :;. , causes additional flow-

area blockage and mainstream deflections (7. 15i. The main cause of this
accumulation is the migration of the annulus boundary layers due to the cross-

channel pressure gradient ((, 15, 20). The mainstream rotation caused by

turning through the cascade contributes to the accumulation in both suction sur-
face corners whereas the radial pressure gradient causes somei slight migration
to the inner annulus corners ((;. 15).

* Number in parenthosos designates Referinces it end of rtport.

UNCLASSIFIED



UNCLASSIFIED

'>-" * .t• ,,, . 't j ,

;/( I I A f" "

Ai~fN /

Figure 33 Turbine Cascade Secondary. Flows

(1') Sonic general characteristics of corner boundary layer flow are included in
the wvorks of Gersten and Schlichting (4, 10, 17, 19). Transition from laminar
to turbulent flow and the start of separation occur earlier in the corner than on
the adjoining walls. The skin friction drag of turbulent corner flow is greater
than for plates and separation occurs when the kinetic energy in the boundary
layer cannot overcome the pressure increase in the direction of flow. Gersten
(4l) states that the Eulor number is the characteristic parameter for flow with

a constant adverse pressur-e gradient, but does not adequately explain its signlif-

icance with regard to determining the. point of separation for turbine airfoils.

Further investigation of this parameter should be useful since the Eulor number

is a ratio of the local pressure gradient to the local freostroam kinetic energy.

(U) The corner separation phenomena was observed in cascade flow (11). It
was foune that boundary layer separation began in the intersection formed by
the convex surface of the blade and the adjacent side ura11. The complete wall
bo~undary layer did not separate. Instead, during the initial backflow, the wall

loss was confined to the annulus and airfoil intersection and gradually spread
inward over the blade convex surface, manifesting itself as a blade tip stall
condition. On the basis of these observations, it was recommended that cor-
rective measures be applied at the corner rather than at sonic distance from

the wall.
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(U) S'everal genoral conclusions regarding secondary losses which were re-
ported in the literature ar,:

l The inlet hoimdary layer does n(t appreciably affect the corner
secondary losses (8, 17, 20)

0 The corner secondary loss is independent of Reynolds number (17)

* The corner s(conidarny loss is independent of the blade l1kngth for
aspect ratios greater than 2.0 (19)

0 Secondary losses increase with Mach number for subsonic flow (19).

5. BOUNDARY IAYE.R C(ONTROL

(U) Boundary layer control is not a recent innovation (18), but relatively
little has heen accomplished towards controlling the boundary layers in turbo-
machinery. Bound'!ary layer control is the terrm applied to various methods of
favorably influencing th.• boundary layer and its resulting effect on the free-
stream. The most comnmn means of boundary layer control is by either
blowing or sucking (!)), however, for this study these methods have been ex-
cluded since the control toohniques are to be applied to an uncooled turbine
without the complexity of ,xtornally routing gas into, or out of, the main flow
passages. The most promising houndary layer control techniques should be
those that improve conditions in the end wall region since the good turbine
design procedures will insure high efficiency on the mainstream portion of the
airfoil, i. e., controlled vortoxing will optimize the radial work distribution,
and careful airfoil contouring will provide gradual suction surface pressure re-
covery. The statement by Carter (1) that "no amount of attention to secondary
effects can undo the consequences of a mediocre mean section design" is
ospecially valid for this program due to the relatively large aspect ratios, 3. 3
to 7. 7 of some of these airfoils.

(U) For purposes of discussion, information on boundary layer control found
in the literature survey is divided into two classifications: aerodynamic con-
touring and local momentum alteration. The former category includes modifica-
tion of the cascade pressure distribution through airfoil profile changes or end
wall contouring. The latter includes control methods that produce a direct
local effect on the boundary layer.

a. Aerodynamic Control Methods

(1) Controlled Vortex Design

(U) Experimental evaluation of the controlled vortex concept (3) indicates that
this technique can be successfully applied to reduce turbine end wall losses.
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(U) Controlled vortoxing entails precise control of the blade row spanwlse
vortex distribution to prevent excessive corner losses. Evaluation of tur-
bine performance data indicated that high root losses wore closely associated
with the performance of low-velocity-ratio, highly loaded stages, and that
the local reaction level could I)e increased to solve the problem of poor root
performance. Testing results from a variable area turbine provided addition-
al information relating to the problem of low root efficiency associated with
lovk reaction. With the turbine nozzle in a closed position, stage reaction was
less than zero and the spare isc cficic.icy profile for this condition revealed
extremely poor root performance. As the nozzle was moved to its design
position, the reaction became slightly positive and a vrry substantial increase
in root efficiency resulted. Opening the nozzle still further increased the
rcot reaction to about 30 percent and resulted in an additional incrcuaso in
efficiency at the root, in spite of the fact that the blade relative Mach number
had increased appreciably.

(U) Application of controlled vortexing to turbines has boon accomplished
through streamline design analysis. With reaction at the blade mean section
fixed, the camber is gradually reduced toward the root and gradually increased
toward the tip sections, resulting in increased root reaction and decreased tip
reaction when compared to a free vortex design. The higher root reaction re-
duces the adverse pressure gradient imposed on the root suction strface cor-
ners. The decreased tip reaction results in a lower Mach number, and hence
lower loss at the tip suction surface corner. The results of the present study
reveal in detail why this should be the case.

(2) End Wall Contouring

(U) The effect on aerodynamic performance of contouring the vane tip end wall
was investigated in an experimental turbine (2). These experiments indicated
that the efficiency of stages with low aspect ratio can be substantially increased
by contouring the end wall. The end losses in the guide vane cascade were
reduced by decreasing the velocity in the passage section where maximum
turning occurs. This condition reduces the pressure difference between the
suction and pressure surfaces, and consequently the intensity of the secondary
flows. This reduced pressure difference in the forward passage section is in-
dicated in figure 3.4 . Also, the end wall contouring formed a convergent flow
passage at the exit which reduces the magnitude and length of the adverse
pressure gradient on the suction surface corners and produces a favorable
effect on the boundary layers on the end walls of the channel. The performance
data indicated that, for the low aspect ratio airfoils tested, end wall contouring
effectiveness increased as aspect ratio was reduced. With an aspect ratio of
unity, the losses were reduced 0.5 to 1 percent and with an aspect ratio of 1/3,
2. 0 to 2. 5 percent. The effectiveness of end wall contouring was also a function
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of the amount of constriction. The loss measurements also indicated that the
effects of the outside diameter wall contouring were most noticeable near the
inside diameter wall, a probable consequence of the low airfoil heights tested.

SA(P /Po

0.0

-- AXIAL CHOD WAL

Figure 34 Pressure Distribution

(3) Local Uncambering

(U) It has been suggested (10) that by varying the blade camber in accordance
with the inlet velocity distribution, correction can be made for the phenomenon
of overturning near the walls. It was anticipated that the reduction of camber
at the blade tips which this method necessitates will also favorably affect the
position of the separation point on the blade surface in the corners. The
approach taken in this report directs attention towards the reduction of span-
wise variations in outlet angles. This technique should directly reduce the
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secondary flow velocities and end loss within each airfoil row, and the greater
uniformity in the inlet conditions at tho succoeding airfoil rcAv should give con-
siderablo improvement there. Further, there is the possibility of reducing
the tendency for separation from the blade surfaces, this being the primary
aim in secondary flow control.

(U) Blades were evaluated with a constant vaniber angle over the center three-
quarters of the span (figure 35 ). The camber angle at each end decreased
linearly to zero. The evaluation indicated the total pressure losses were re-
duced with this camber arrangement and the tendency to delay corner separa-
tion was supported. Reducing the canher to zero at the wall appears to have
more than corrected the overturning effect. It was suggested that a camber
angle at the wall greater than zero might have led to a greater uniformity of
discharge angle over the whole span.

(U) This method of boundary layer control is essentially local controlled
vortcxing in the root and tip regions. Further work is required to deter-
mine if this technique is structurally feasible for blade airfoils with higher
camber angles than the 10 and 20 degree used in this reference.

MI OSPAN CONTOUR

FND WALL CON TOURLI- "

Figure 35 Local Uncambered Airfoil
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(4) Forward-Leaning Blade Tip

(U) An attempt to control the migration of the low energy boundary layer
fluid to the suction surface corner was investigated by leaning the blade
tip forward in the direction of mainstream flow while maintaining the leading
edge axial position (22). This is shown in figure 36

RE LATIVE•

GAS
STREAM

~AIRFOIL
ROOT

N ROTATION

AIRFOIL TIP I QT\I\

TOP VIEW

Figure 36 Forward Leaning Blade Tip

(U) Detailed measurements of the inlet and outlet flow patterns showed a
marked leakage of fluid around the trailing edge of the forward leaning blade
tip from the pressure side of one passage to the suction side of the adjacent
passage. The trailing edge cross-flow apparently leads to vigorous mixing
of high-energy fluid with the wall-boundary-layer fluid accumulating toward
the suction side of the passage. Previous measurements demonstrated that
such a mixing pattern did not occur at the trailing edge of straight blades.
Carbon-black traces of boundary layer flow on blades and wall showed that
suction surface stall had been eliminated almost completely with the forward-

leaning tip.

(U) The overall loss evaluation of the forward-leaning tip was rather incon-
clusive. Passage losses were reported to be less with the forward-leaning
tip than with straight blades; however, additional losses occurred due to the
fluid mixing at the trailing edge. It was concluded that the total losses for the
forward-leaning tip airfoil were slightly lower than a straight tip airfoil, but
not significantly different.
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I). I.ocal Momenttum Alte ration 'Meth(od•

(1) Vortex (;encrato rs

(u) The valuo of the mixing dtlvice known as the vortex gonorator has been well
est.blished at subsonic speeds through rnanv successful applications (13), The

generator is simply an energy convorter in thi form of a low aspect ratio, senmi-
span ui ng mounted with an angle (of att•ck ,)n a sutrfa cc. The generator accom-
plishes a conversitmn of translational energy to roPtational energy in the form of a
trailing tip vortex. The induced volocities associated with the trailing vortices
promote re-onergization of the boundary layer by an exchange of kinetic energy

from the main stream to the boundary layer, thus making it more resistant to
separation in an adverse pressure gradient.

(U) The mixing energy contained in the trailing vortex roleased by a vortex
generator is directly chargoablo as induced drag. This induced drag is larger
than the profile drag associated with the generator when operating at high lift
coefficients and therefore represents a large proportion of the drag introduced
by the generator.

(17) Theoretical and experimental work was undertaken by the United Aircraft
Research laboratories to evaluate the relative mixing characteristics of
various types of vortex generators. The exporimental work (5) was carried
out in the UAC Pilot Wind Tunnel diffuser by evaluating the effects of the var-
ious generators on the bioundary layer velocity profiles and momentum losses

at a station approximately 71) boundary layer heights downstream of the gen--
orators. Those tests indicated thai boundary layers, which varied only a small
amount, could 1est be handled %% ith the rectangular shape, whereas the tri-
angular generator adjusted more easily to a changing boundary layer condition.
The vortex shed by the triangular shape shifted with the boundary layer and
maintained a position close to the boundary layer edge. This vortex lcation

was found to lie the most favorable for efficient mixing.

(U,) The boundary layer ro-energization which may lie accomplished through
the use of vortex generators has encouraged the extension of generator applica-
tions to transonic speeds whero shock inducOd separation has given rise to a
wealth of special aerodynamic problems. Among these are such phenomena as
buffeting, stahility and trim changes, and loss in control effectiveness, which
are inherent by-products of separation. The ,ffects of vortex generators on

the aerodynamic characteristics of a typical upswept model wing wore deter-
mined at transonic Mach numbers in the UAC eight-foot wind tunnel to verify

the results of the mnodel tunnel study (13).
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(U) T1Iw porfofrniance characturist ic,3 and dlosign ruq,jirumunts for transonic
vortex genorators parallel those established for low speed application except
for differences in generator location and generator geometry. The bhst lo-
cation for generators to supress shock induced sepa ration was found to be 25
bountl',rv layer thicknesses upstream of the shock. The effectiveness of the
rectangular generators in the transonic application is sensitive to thickness
ratio and is reduced significantly at l(ov ratios (2 percent).

(U) Vortex generators intended to delay shock-induced separation on conven-
tional compressor airfoils were found to be detrimental to cascade perform-
ance (21). Tests were made without the vortex generators fitted, and with
a sinlgle spanxvise row of vortex generators at 15 percent chord from the
leading edge. It was thought that the 0. 005 inch high base of the vortex
generator was promoting boundary layer separation and increasing losses.
The test was repeated with the base fitted into a recess milled in the blade
surface. With the base flush with the blade surface the vortex generator drag
was reduced by about one-third; however, they were still detrimentalsto the
cascade porformantce. The cascade was also tested with the vortex generators
fitted to the blades at G. 2 po rcent chord. The losses were greater with the
vortex generator at this position than at the 15 percent chord position. It was
concluded that, for the configurations tested, shock induced boundary layer
separation was delayed but the overall effect of vortex generators was detri-
mental to performance.

(2) Slots

(U) The incorporation of slots in airfoils can be utilized to produce two
methoxs of boundary layer control. The existing boundary layer can be
energized by introducing high energy fluid from the pressure side of the air-
foil (14, 23), or the existing boundary layer can be replaced by another
boundary layer originating within the slot (12).

(U) Blade tip slotting to prevent wall stall has boon investigated (14). The
major conclusion was that blade loading in tip regions may be increased by
removing low energy fluid and reducing separated areas on the blade surface,
i. e., improving pressure gradients along the profile. However, accuracy of
the static pressure measurements in the region of interest were not accurate
enough to provide detailed data.

(U) ft was evident that unless the slot entrance extended well into the region
of high-energy fluid, the mass flow through the slot was insufficient to affect
the suction surface conditions. It was also shown that with the slots tested,
a highly convergent slot passage was necessary to obtain high exit velocities.
This resulted in a very small slot exit area. When this exit area was reduced
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the mass flow was also reduced. The resulting small amount of high-energy
fluid had insufficient effect on flaw conditions. A mirimum slot size of 3/16
inch was recommended for ar, airfoil with a 2. 4 inch chord.

(U), The use of partial span blade slots in the proximity of the Ond walls
intended to control separation was one of several control techniques reported

in Reference 23. The first blade tested had a slot confined to the blade oxtrom-
ity from the pressure side to the suction side. ['he slot intersected the suction

surface in the region where flow reversal start'd. The investigation of the

slot effect on flow conditions indicated that the reverse flow opposirng the jet
was of such strength that it reversed the jet direction shortly after it issuod

from the slot. The result of the interaction was that the flow disturbances
over the blade were intensified. Increasing the Slot depth to 12 percent span
and changing the slot contour did not appear to reduce this condition.

(V) A second test blade had a slot located approximately three-quarter chord
lengths from the leading edge. This test blade was ineffective since the slot
was located within a stalled area even for moderate values of stagger angle.

The same characteristics of jet flow reversal and increased separation were
observed as with the first test blade.

(U) A compressor annular cascade investigation conducted to provide criteria
for the design of slotted rotors and stators also indicated the importance of
slot location (12). Initial tests of the unslotted stator disclosed that the
minimum pressure and separation points occurred at 12 and 85 percent of the
chord, respectively. Based on these data, two axial slot locations were sel-

ected. The forward location was at 55 percent of the chord on the suction sur-
face, which was approximately half-way between the minimum pressure point
and the flow separation point. The rearward point was selected at 75 percent
of the chord, which was slightly ahead of the flow separation point for the un-
slotted configuration. In addition to siot location, several variations of slot

geometry were tested at each slot location.

(U) For the forward slot location, the stator wake loss coefficient varied
between 17 and -13 percent of the unslotlod loss coefficient, depending on the
slot geometry utilized. For the rearward location, the loss coefficient
ranged between 70 and .37 percent of the unslotted loss coefficient, depending
on the slot geometry employed. This result is attributed to two factors:

"* The available pressure drop across the stator vane @pressure-to-
suction surface) at the 75 percent chord slot location was less than
the pressure drop across the vane at the 55 percent chord slot

location.

"* The suction surface boundary layer at 75 percent chord is thicker
than at 55 percent chord.
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(U) The first of the above factors results in a relatively low slot flow velocity
and thus reduces the Coanda effect. I he thicker boundary layer rotluires a
larger pressure gradient normal to the suction surface to induce freestrearn
flow t(Avard thu surface. Those factors tend tc support the result that the rear
slot wake was shifted toward higher turning but not reduced in size.

(U) Data for both slot locations indicated about the same increases in lift
coefficient and air turning angle. The slot configuration with the lowest wake
loss coefficient showed increases in lift coefficient and turning angle of about
10 percent and 2 degrees, respectively.

(U) The effect of slot geometry on performance was less pronounced than the
effect of slot location. The geometry parameter that produced the most signif-
icant reduction in wake size for a forward slot configuration was the rear
section leading edge radius. When this radius was increased from 0. 028 to
0. 056 in., the wake loss coefficient decreased from 0. 031 to 0. 012.

(U7) The Coanda radius was the most significant geometry parameter that was
varied for the rear slot configuration. A slight increase in Coanda radius
produced a slight decrease in wake loss (0. 063 to 0. 053). Subsequent increase
in Coanda radius resulted in a large increase in wake loss coefficient (up to
0. 130). This change in wake loss suggests the probability of an optimum
Coanda radius. Insufficient data were obtained to evaluate the optimum Coanda
radius for the forward slot location.

(3) Flow Inhibitors

(U) A boundary layer control device that appears particularly applicable to
cascade flow is the so-called dam, or flow fence. Essentially it is a fin
mounted perpendicular to the convex surface of the blade near the sidewall,
or on the end wall, and lying parallel to the mainstream flow direction. Its
primary purpose is to mechanically hinder the mainstream rotation, boundary
layer migration, and corner vortex flow that force the separating sidewall
boundary layer inward over the suction surface of the blade.

(U) An attempt C23) was made to reduce the radially inward spread of flow
separation over the convex surface of a blade by placing a normal dam, or fin,
on this surface near each extremity, the length being parallel to the flow
direction. These acted as constraining boundaries, confining any spanwise
flow to narrow regions between the dams and sidewalls.

(U) The first test blade had thin wooden dams extending along approximately
three-quarters of the chord length from a point ahead of the most forward
extent of the stalled region on the blade to the trailing edge, and the maximum
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height %%as approximately 40 percent of the gap betveen blades. A test %%as run
in which a single blade with these dams was placed in cascade with the stat(lard
assembly in order to compare flow patterns. An improvement of the flow" over
the blade surface between the dams was apparent from fl(Av patte.rn comparisons.
Further tests were run with variations in length, shape, thickness, maximum
height, displacement from the blade extrenmities, and alignment relative to the

idoiwalls. Bettor flow patterns were obtained from a length extending from
just ahead of the separated region to the trailing edge than from either full
chord length or partial chord length dams starting behind the forward extent
of the separated region. Low dams (10 percent gap) were found to he inef-
fective in halting the inward spread of separation, while those of loight exual
to 50 percent gap vibrated so badly tihit they blow off Ixfore tests could be
completed. The best flow pattern was obtained from a blade having dams
close to the sidewalls with the trailing edge slightly convergent toward midspan.
A curious effect was observed when dams cut from metal shim-stock were
substituted for the wooden models. These seemed to have no effect on the
secondary flows, and the flow pattern appeared unchanged. One test was run
with a thick dam having a curved surface facing the sidewall and a flat surface
facing midspan in an attempt to induce a local flow acceleration in the boundary
layer at the blade-wall juncture by means of a constricted passage, but the
flow patterns gave an indication that the anticipated results did not mate, ializo.
To measure the effect on the cascade pressure-rise, a cascade of blades with
the dams installed was assembled and run for a full range of stagger angles at
approximately 0. 34 Mach number. The results of these tests show that the
addition of dams reduced the pressure recovery for all stagger angles tested.
At a stagger angle of 24. 8 degrees the pressure-rise coefficient was reduced'
15 percent and the deflection angle was increased 1 degree.

(U) Another investigation with flow fences (15) showed that sheotmetal fences
on the blades were not always effective in blocking the radial flows to reduce
the accumulation of low-momentum fluid at the inner wall. The fences incrcas-
ed the wetted surface area in the flow passages which introduces some addition-
al viscous losses. Separaticn of the modification-induced losses from the
original low-momentum fluid losses was not readily feasible. Accordingly.
the changes in size of the inner wall loss core were used as criteria for eval-
uating the effectiveness of the modifications, and as a basis for interpretation
of the results.

(U) Aslexpocted, none of the modifications used affected the losses near the
outer wall under any condition, since the flow-fence was downstream of the
outer wall radial flows. The flow-fence modification was tested at a hub Mach
number of 0. 94. Comparison showed that the flow fence apparently had no
noticeable effect on the inner wall loss core. The flow evaluated at a Mach
number of 1.46, indicated a sharp reduction in size of the inner wall loss core'
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as a result of the fl,, lhnce. 'iho vircurnferentially averagod los.s. 1 'hmtted
radiallv ovetr on-half tho blad() height inthc'ated a change in tho l.•sw distr te-

tion: hi wvt r'*r, an overall integratedl blade Ilos co•uparing the perforwita l(e't

with. and without, the flow% fence was not f)resvinttl.

(U) Fiow fences aro currently being investigateyl by Pratt & Whitney Aircraft.

•rsts are being ct'ndlu'cttl im a single s1tatge conilpressor rig with flow fenIWe

attached to the end wall platf ,rnis. At this time, testing and evaluation has
not beetn compjleted.

(4) Fillets

(1') A secondary flow visuatization study in cascades was reported (7) in
which ono of the configurations tested had fillets at the intersections of the
airfoil and the end wall. It was observed that the fillets apparently had little
offt"t on the formation of the passage vortices and that similar results were
obtained with larger fillets.- Ilowover, no performance data was presented to
indicate the effect of' fillets on the pressure loss through the cascade.

(1*) The topic (if fillets was discussel with Professor II. Schlichting. lie was
of the opinion that corner filluts should have the effect of shifting the corner
flow condition fronm the three-dimensional condition described by Gersten (4),
toward the one which is predictod by two-dimensional boundary layer theory.
This would dolay the corner separation to a point downstream.

6. SEI ECTION OF IIOU NDARY lAYER CONTROL METHODS

a. Characterization of Corner Problem

(U) There appear to be two related mechanisms that contribute to largo aoro-
dynainik losses in the end wall regions of turbine cascades. The first involves
a thickening of the boundary layer in the suction surface corners as a result of
both the boundary layer growth in the mainstream flow direction, and the
migration of low momentum fluid along the annular walls to the suction surface
corner region. The second is separation of the boundary layer in the suction
surface corners (long before airfoil boundary layer separation) due to abnormal
thickeaing resulting from the end wall and the adverse suction surface pressure
gradient. Although the literature contains several recent references to corner
separation as the predominant effect, there is also evidence indicating that
high end wall losses without corner separation may be possible. Therefore,

the selection of boundary layer control methods for this program was influ-
enced by the need to consider the two possible situations, one having high end
wall loss without separation, and the other with largo separated regions in the
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co rtnr. W\ilhuit s paratmn, the on ly aplrent loss moE.hanism tto mlCtcli; is the
tmil %% ' ll tf nlrv a er minigratt in ti ia rd thv Milet ii I siirracks Ctrte'rs. it

!)$stant.iIl)•t ratlull Suepa ,atCiIond eliA wsr thie lus Ivtal iimmttiteiitiiii . -,ite ,t run lottls

s.hou<lhl he e'fft'i' vle.

1). l 'rlm'inar " Selection uif Control Methoils

(W') All tit thln airfoil.s considere.d for this ;prograin wera designed usitig cin-
trolhil vorttxineg techniqutis which are ntm .,standard practice at Pratt & Whitnec
Aircrzft. ()thor meoth(lds of boundary layer control which can b-u appli cd to
reduce secondary flow effects ar enid wall contouring, local uncatbh,.ring of
the airfoil root and tip sections, and flow fences. End wall contouring and
local uncamnboring provide the additional benefits of locally reducing the ad-
verse pressure gradient in the suction surl'aco corners and thus also contribute
to the prevention of corner separation.

(U) Methods that appear to be suitable for preventing suction cornosr seplra-
lion by local momentum alteration include vortex generators, corner slots
and corner fillets. Those techniques have little or no direct effect on the
secondary flow problem.

(U) The literature survey revealed little design information that could b1 used
to apply these boundary layer control methods. Design procedures required
for controlled vortexing are well established. However, except for vortex
generators, no systematic experiments to establish empirical design criteria
for the remaining methods have been reported. Preliminary analyses for end
wall contouring, vortex generators, corner slots, and fillets are discussed
under Task Id. (Section V).

(The reverse of this page is blank)
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SECTION V

PRE LIMINAMY BOU NDA RY LA YF:It CONTROL ANALYSIS (Task !d)

1. i•I. (I- 0 1.11.:( 1V'TI i:

(') ilrovide initial guide lines for the application of corner boundary laver con-
trol technique.

2. TASK OBJECTIVE

(U) Preliminary analyses were conducted to provide initial guidelines for the
application of four corner boundary layer control methods to the turbine airfoils
designed in Section M, Task lb. Due to the limitations of available analytical
techniques and the lack of data in the literature, It was not possible to absolutely
rank the boundary layer control techniques in terms of effectiveness for each
selected airfoil design as orginally intended. It was, however, possible to gain
condiderable insight into the probable usefulness of each promising technique.
Since the airfoil pressure distributions are all very similar, such a ranking
would be of doubtful value. The preliminary analyses conducted for end wall
contouring, vortex generators, corner slots, and fillets are discussed in the
following paragraphs.

3. END WALL CONTOURING

(U) The proper application of end wall contouring offers potential benefits in
reducing both end wall boundary layer migration and corner boundary layer
separation. Cascade tests reported in the literature for low aspect ratio vanes
indicated a substantial effect of end wall contouring on the opposite wall. How-
ever, for the higher aspect ratio airfoils of this contract, the effects of end wall
contouring are expected to be confined to a region near the wall. A quasi-three-
dimensional numerical apalysis of the effects of end wall contouring on cascade
static pressure distributions was attempted. This approach involved super-
imposing a turbine streamline analysis on a two-dimensional cascade pressure
distribution calculation. This procedure was developed by the company In order
to analyze the effects on pressure distribution of contouring both root and tip
end walls of a first-stage turbine vane (Figure 37). The results of this prior
analysis, shown in Figure 38, illustrate the dual benefits of wall contouring on
the root section: (1) the lower pressure difference between pressure and suc-
tion sides in the forward part of the channel, which reduces boundary layer mi-
gration to the suction surface corners, and (2) the reduced adverse pressure
gradient on the suction surface in the trailing edge region, which tends to delay
the onset of separation to a point closer to the trailing edge. A convenient way
to interpret the effects of end wall contouring is that the local increase of blade
area results in local unloading of the airfoil, which is highly desirable.
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Figure 37 Vane Flowpath With Contoured End Wall
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(U) Two ohstacles were encountered in attempting to apply these existim! com-
puter programs !o the analysis of the contract turbine airfoils. Th. first is
that the existing procedures cannot handle supersonic meridiomal velocities.
IAwcal regions of supersonic flow exist on most of the highly loaded airfoils
being considered in the current program. The second problem concerns the
convergence of the existing computer programs. For flow paths with relativlv(y
small radii of curvature (e.g., contouring of walls for high aspect ratio air-
foils), the current numerical techniques allow the streamlines to shift too much
between successive iterations and a convergent solution is not obtained.

(U) A good deal of company sponsored work is now being undertaken on this
problem. One alternative procedure uses the matrix through-flow method of
calculation (I1. Marsh, R&M No. 3509, Brit. Aero. Res. Council). Although
calculations by this method were not available for inclusion in this report, work
will be continued in this area to assist the design of contoured walls for the
remainder of this contract study.

(U) At this point, it can only be concluded that end wall contouring is a promising
boundary layer control technique.

4. VORTEX GENERATORS

(U) Vortex generators have proved to be useful devices for the prevention of
boundary layer separation in inlets and diffusers, and on aircraft wings where

relatively thick boundary layers are encountered. The vortex generator is
essentially a mixing device which strengthens the boundary layer by an exchange

of energy with the mainstream. Pairs of vortex generators that produce counter-
rotating vortices are generally more efficient (higher lift/drag ratio) than co-

rotating arrays. The vortex generators must be located upstream of the separa-
tion point to allow sufficient time for mixing to take place.

(U) Experimental investigations of vortex generators to develop effective bound-
ary layer control have resulted in the following design criteria:

"* Rectangular or triangular shaped vortex generators are the most effi-
cient.

"* The triangular shaped geometry is more tolerant to variation of the

boundary layer thickness 6 from the design condition.

* Rectangular vortex generators should have a chord and span dimension
of 1. 16. Triangular vortex generators should have a chord of 2.5 and
a span of 1.25.
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0 The vortex generators should have a thickness-to-chord ratio of 6 to
8 percent, an incidence angle of 18 degrees, and a lateral spacing of
3.5 6 . They should be located 12 to 15 6 upstream of the separation
point. If the separation is shock induced, the distance upstream should
be increased to 25 6

(U) Boundary layer separation in turbine cascades could begin in the suction
surface corners. Therefore, placement of vortex generators for this applica-
tion should be in the vicinity of the corner as shown in Figure 39. For the
high work, low pressure turbine of this contract, the root section, suction side
contours all have a favorable pressure gradient for the leading 20 percent of
x/B which will prevent separation until after this point. The root section bound-
ary layer thickness distribution calculated for the four low solidity airfoils is
indicated in Figure 40. Based on this thickness and the design information
presented above, the vortex generator span and chord dimensions are indicated
in Table XI for the first vane and second blade of the low solidity turbine. These
dimensions are typical for all four airfoils.

TABLE XI

VORTEX GENERATOR DIMENSIONS (INCH)

Airfoil First Stage Vane Second Stage Blade
x/B Span Chord Span Chord

0.2 0. 0037 0.0075 0. 0081 0. 0162

0.4 0. 0062 0. 012 0. 0137 0. 0275

0.6 0.0119 0.023 0.0194 0.0388

0. 8 0. 0232 0. 046 0. 0281 0. 0562

(U) The vortex generator should have a sharp leading edge and a thickness of
6 to 8 percent of the chord length. For the largest generator listed above the
thickness would be 0. 0045 inch. The fabrication and attachment of conven-
tional vortex generators of this small size is not feasible. The possibility exists
that some other type of device would induce mixing of high energy fluid in the
boundary layer and produce an effect similar to the vortex generator. However,
the design and development of such a device is beyond the scope of this study.
Therefore, based on the fabrication and attachment problems, vortex generators
are not recommended for boundary layer control on the turbine airfoils of this
contract.
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SCALE: 3X SIZE

Figure 39 Vortex Generator Placement
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5. CORNER SILO'I'S

(U) lloundary layur re-energization has been applied successfully to diffusf rs
where an external source of high pressure ai: could be used. iHowever, the
use of external air is not allowed under the ground rules established for the
contract turbine. Slot flow only channels air from the pressure side of the airI-
foil to the suction side. Since the total pressure is essentially the same on
both sides, there is insufficiunt power available for re-energization of the
suction surface boundary layer. However, an alternative mechanism considered
practical is the displacement of the old boundary layer by a new one Initiating

at the slot as illustrated in Figure 41 . The slot boundary layer will he thinner
and therefore more resistant to separation than the original boundary layer due

to the shorter surface distance available for growth.

(U) 1k)undary layer calculations were made for a corner slot at the root sec-
tion of the second stage, low solidity blade (Figure 42) to evaluate the
potential of this control method for reducing corner separation. The tendency
for corner separatinn iner,:Lses after the gage point on the suction surface due
to the increased rate of recompression starting at that location, and to the re-
sulting rapid growth in boundary layer thickness. Therefore, the slot opening
on the suction surface was located upstream of the gage point. Two basic
assumptions in the analysis were that the slot flow does not substantially alter
the original pressure distribution around the airfoil, and that the slot boundary
layer grows just as though it were immersed in the undisturbed Inviscid flow.
It was further assumed that reasonable slot widths-would be sufficient to pre-
vent merging of the slot boundary layers prior to discharging on the suction sur-
face. Merging of the boundary layers within the slot would result in a thick
boundary layer reaching the suction surface, thus reducing the effectiveness of

the intended boundary layer replacement.

(U) Figure 43 (a) shows the growth in momentwn thickness for the two different
assumed pressure distributions of Figure 43(b). The growth of the laminar
boundary layer within the slot can • seen to be mainly dependent on surface
distance rather than the pressure -radient within the slot. This fortunate re-

sult implies that the slot shape is not critical and relieves the need for tight
manufacturing tolerances which would be difficult to achieve in the small slots
being considered. The momentum thickness of the new boundary layer at the
gage point is approximately 0. 0001 inch compared to 0. 0014 inch for the original
unslotted airfoil.
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(11) Since the suction surface velocities are predominantly supersoirfe, the slots
will usually Iie choked, which provides better control over the slot flowv .iti
simplifies associated calculations. As a result of the above reduction inr
point nornle•turn thickness, the momentum thickness at the traillig edge w,#.s
reduced from 0. 003 to O. 001 (Figure. 44) and the drag coefficient was tVer.as-d
from 0. 0012 to 0. 0(t22 at 92 percent K/B. These results indicate a stst:Inti:,!
strengthening of the trailing edge boundary layer through the use of slots.

(U) Typical corner slot applications are shown in Figure 45 for the low
solidity first-sLage vane and second-stage blade root sections. The colnifined
thickness of the slot boundary Layers is approximately 0. 020 inch. Therefore,
a slot width of 0. 030 Inch was selected to ensure that the slot boundary layers
do not merge. The aft side of the slot is faired into the suction surface at the
gage point to provide a smooth entrance for the new boundary layer formed in
the slot. The slots should be hloated as close as possible to the end wall. A
spanwise slot height of 0.20 inch is considered adequate for the low pressure
turbine airfoils under consideration. This height is about 10 times the two-
dimensional boundary layer thickness on the airfoil surface which sould Insure
sufficient coverage of th. ,orner flow region, without substantially affecting
the origin-il pressure distribution or the main foil boundary layer.

(U) Corner slots appear to he both practical and effective devices for the con-
trol of corner boundary layer separation.

WWW TW .0OWM t Kt
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Figure 44 Effect of Momentum Thickness at Gage Point on Momentum Thick-
ness and Friction Coefficient at 92 Percent Chord Point
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Figure 45 Typical Corner Slot Applications
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6;. CORINERI FILI, .IIS-

(U) The flow alonK aI corner of two relatively flat surface. intersveting at a
right ang•h,, :;uc.h as the turhine ai rfoil and the end wall, has a boundarv laaer

quite different from that of the two-dimensional boundary layer on the adjacent
surfaces. At the intersection of *he two surfaces, a mixing of the th-I horunrlary
layers occurs with a strong mutual Interference and excessive skin friction.
The transition from laminar to turbulent flow occurs further upstream riar the
conici, rather than on the adjacent surfaces. The boundary layer in thl- corTlr
is also exposed to a severe adverse piressure gradient which causes it to thicken
and separate rapidly. The corner flow phenomena was discussed with Professor
}I. Schlichting and his opinion was that corner fillets should have the effect of
shifting the corner flow condition toward the two-dimensional boundary layer
condition present on the adjacent surfaces.

(U) A suitable analytical technique has not been developed for the complex

three-dimensional corner flow. Therefore, a simple model of the corner
bounda•ry layer was constructed to guide the initial sizing of fillets (Figure 46 ).
The Nasic hypothesis Is th: K boundary layer behavior in the corner can be made
to approach that of i'- two-dimensional boundary layer by reducing the area of
wetted surface in the (corner.

I
BOUNDARY LAVYE RN ,

MAIN -LOW

(R~

R - FILLET RADIUS I
= BOUNDARY LAYER THICKNESS //

MAIN STREAM SURFACE AREA FILLET

BOUNDARY LAYER WETTEOSURFACE AREA (AwE)

Figure 46 Simplified Corner Boundary Layer Model
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(U) The difference between the corner boundary layer wetted surface area (Aws)and the main stream surface area (Ams) is a function of fillet radius (RF) andboundary Layer thickness (6) as expressed in the following equation.

A - A
ws ms 6

ws F

This area difference is reduced to 10 percent with a fillet radius equal to In 6Using this criterion, the fillet radius as a function of axial location is indicated
in Table XUI for the suction side roots of the first vane and second blade.

TABLE XII

FILLET RADIUS (INCH)

x/B First Stage Vane Second Stage Blade

0.2 0.030 0.065

0.4 0.050 0.110

0.6 0.095 0.155

0.8 0.185 0.225

The point of tangency of the fillet with the root platform is indicated in Figure47 . The fillets are faired back into the airfoil leading and trailing edges toavoid abrupt wall geometry changes in these locations. The reduction in flowarea (blockage) for the fillet of this type is only 0. 46 and 0. 55 percent for thefirst vane and second blade, respectively, as illustrated in Figure 48 . Con -sequently, there should be little disturbance of the original potential flow pres-sure distribution due to their presence. Although the literature offers littleencouragement for their effectiveness, corner fillets appear useful at least in
the event of corner boundary layer separation.
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FILLET
FIRST VANE

ACTUAL SIZE

SECOND BLADE

Figure 48 Suction Side Root Fillet-Axial View of Passage From Rear

7. TENTATIVE RANKING OF BOUNDARY LAYER CONTROL METHODS

(U) It has already been noted that the corner boundary layer loss can manifest
itself as either an unseparated or a separated flow, and that techniques exist
which should control either phenomenon. As the solidity of any row of turbine
airfoils is creased, the corner boundary layers will move towards separation.

However, contour refinement at any given solidity reduces the possibility of
separation in the suction surface corners. Due to the fact that no analytical
techniques for predicting the complex behavior of the corner boundary layers
exist, the net effect of the contour refinement at the high loadings of this study
cannot be determined in advance.
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(U) The application of boundary layer control methods to the Phase [I c.acade
testing will depend directly on the nature of the end loss observed in the h:ise-
line airfoil tests. If the Ibaseline tests indicate high corner losses without any

significant boundary layer separation, the control methods should be essentially

limited to those that tend to reduce boundary layer migration on the end wall,.
e.g., end wall contouring and local uncambering. In the event that significant
corner separation is observed, end wall contouring and local uncambering should
still be beneficial since these methods have the potential of reducing both the
cross-flow pressure gradient casing boundary layer migration and the adverse
streamwise pressure gradient causing separation. The local momentum altera-
tion methods of corner slots and fillets should also be applied to reduce or
eliminate the separated region.

(U) As previously mentioned, it was not necessary to rank the various boundary
layer control methods according to their effectiveness for individual airfoils.
However, a tentative ranking is presented below, for any airfoil, based on the
two end loss situations considered possible.

a. Unseparated Corner Boundary Layer:

* End wall contouring at root and tip
* Local uncambering at root and tip

b. Separated Corner Boundary Layer:

__ End wall contouring
"* Local uncambering
"* Corner slots
"* Fillets.
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SECTION VI

SELECTION ()F BASELINE 'I'I NE (Task le)

R11, OBJECTIVE

(U) To Fix The Two-Stage Turbine Baseline Design.

(U) The final choice of turbine configuration, including highly refined airfoil
contours, rests upon judgments formed from all the information assembled
and generated up to this point.

(U) The design system has i.dicated that a number of turbine configurations
are capable of meeting the performance requirements of this contract. In parti-
cular, the medium reaction, normal solidity turbine promises to meet the re-
quired goals in a configuration that would be practical and realistic. This normal
solidity is itself beyond the present state-of-the-art. Furthermore, the medium
reaction, lower solidity studies have shown that further improvement may be
possible. It should be reiterated, however, that the turbine design systems have
deliberately been pushed beyond their presently-established limits during this
study, and cannot yet be assumed to be entirely reliable.

(U) it has also been pointed out that the similarity of the resulting airfoil pres-
sure distributions makes differentiation between the various medium reaction
turbines, on the basis of boundary layer control, almost impossible. The most
important conclusion reached in the boundary layer control portion of this study
was that the physical manifestation of the end wall losses cannot be established
in advance of experiments. Since the control of unseparated corner boundary
layers makes use of different techniques than the control of -Leparated corner
boundary layers, the choice of applicable techniques must await the testing of
the baseline airfoils.

(U) As a result of such considerations, it is recommended that-

(1) The baseline turbine be the medium reaction, normal snlidity design.
This choice is entirely consistent with the goals of the study and
with reasonably prudent application of existing analytical techniques.

(2) The baseline airfoils be carefully tested to determine the nature and
extent of the end los' mechanism before choosing and designing ap-
propriate boundary layer control techniques.
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(3) The rank order of control techniques for unseparated corner bound-
ary layers should be:

"* End wall contouring at root and tip
"* Local uncambering at root and tip

while for separating corner layers it should be:

"* End wall contouring at root and tip
"* Local uncambering at root and tip
"* Corner slots
"* Fillets in suction surface corners
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APPENDIX I

PRELIMINARY AIRFOIL SECTIONS
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